SUBMERSIONS FROM ANTI-DE SITTER SPACE WITH TOTALLY GEODESIC FIBERS

MARTIN A. MAGID

Introduction

In [5] O'Neill introduced the notion of a Riemannian submersion. Escobales [1], [2] classified Riemannian submersions from a sphere S^n and from a complex projective space $\mathbb{C}P^n$ with totally geodesic fibers.

This paper investigates such submersions for an indefinite space form: anti-de Sitter space. It is shown that there is essentially only one submersion from H_1^{2n+1} onto a Riemannian manifold with totally geodesic fibers, and this is the standard one onto a complex hyperbolic space $\mathbb{C}H^n$.

- 1. Let M, B be C^{∞} indefinite Riemannian manifolds. An indefinite Riemannian submersion $\pi: M \to B$ is an onto, C^{∞} mapping such that
 - (1) π is of maximal rank,
- (2) π_* preserves the lengths of horizontal vectors, i.e., vectors orthogonal to the fibers $\pi^{-1}(x)$, $x \in B$,
 - (3) the restriction of the metric to the vertical vectors is nondegenerate.

Consider the following example, [4, p. 282, Example 10.7] $p: H_1^{2n+1} \to \mathbb{C}H^n$, where H_1^{2n+1} is a (2n+1)-dimensional anti-de Sitter space with constant sectional curvature -1 and signature (1, 2n), and $\mathbb{C}H^n$, defined below, is a complex hyperbolic space. On \mathbb{C}^{n+1} let

$$(\vec{z}, \vec{w}) = -z_0 \overline{w}_0 + \sum_{k=1}^n z_k \overline{w}_k,$$

$$\langle \vec{z}, \vec{w} \rangle = Re(\vec{z}, \vec{w}) = -x_0 u_0 - y_0 v_0 + \sum_{k=1}^n x_k u_k + y_k v_k,$$

where

$$\vec{z} = (z_0, \dots, z_n) = (x_0 + iy_0, \dots, x_n + iy_n),$$

$$\vec{w} = (w_0, \dots, w_n) = (u_0 + iv_0, \dots, u_n + iv_n),$$

$$H_1^{2n+1} = \{ \vec{z} \in \mathbb{C}^{n+1} \colon (\vec{z}, \vec{z}) = -1 = \langle \vec{z}, \vec{z} \rangle \}$$

$$= \{ (x_0, y_0, \dots, x_n, y_n) \colon -x_0^2 - y_0^2 + x_1^2 + \dots + x_n^2 + y_n^2 = -1 \}.$$

Received May 23, 1980, and, in revised form, June 20, 1981.

The tangent space to H_1^{2n+1} at \vec{z} , $T_{\vec{z}}$ is

$$T_{\vec{z}} = \{ W \in \mathbb{C}^{n+1} : \langle \vec{z}, W \rangle = 0 \}.$$

Let $T_{\vec{z}} = \{ U \in \mathbb{C}^{n+1} : \langle U, \vec{z} \rangle = 0 = \langle U, i\vec{z} \rangle \}$, and setting $H_1^1 = \{ \lambda \in \mathbb{C} : \lambda \overline{\lambda} = 1 \}$ we have an H_1^1 action on $H_1^{2n+1}, \vec{z} \mapsto \lambda \vec{z}$.

At each point of H_1^{2n+1} the vector field $i\vec{z}$ is tangent to the flow of the action, and $\langle i\vec{z}, i\vec{z} \rangle = -1$. Note that the orbit is $x_t = (\cos t + i \sin t)\vec{z}$ and $dx_t/dt = ix_t$. The orbit lies in the negative definite plane spanned by $\{\vec{z}, i\vec{z}\}$. The identification space of this action is called CH^n , and the projection is denoted by p. It is easy to see that $T_{p(z)}(CH^n)$ can be identified with T_z^r . This construction mimics that of CP^n . CH^n has negative constant holomorphic sectional curvature. $p: H_1^{2n+1} \to CH^n$ is an indefinite Riemannian submersion.

The main result of this paper is

Theorem 1. If $\pi: H_1^k \to B^j$ is an indefinite Riemannian submersion from anti-de Sitter space to a Riemannian manifold with totally geodesic fibers, then k = 2n + 1, j = 2n, and B^{2n} is holomorphically isometric to $\mathbb{C}H^n$, where B^j is equipped with an integrable almost complex structure induced from the submersion. (See [1], [2].)

2. This section deals with the algebraic preliminaries.

Given $\pi: M \to B$, an indefinite Riemannian submersion, let V and H denote the vertical and horizontal projections.

$$T_{x}(M) = V_{x} \otimes H_{x}$$

$$V / \qquad \downarrow H$$

$$V_{x} \qquad H_{x}$$

O'Neill [5] defines two fundamental tensors on $(M, \nabla, \langle , \rangle)$:

$$A_E F = V(\nabla_{HE} HF) + H(\nabla_{HE} VF), \qquad T_E F = H(\nabla_{VE} VF) + V(\nabla_{VE} HF),$$

for vector fields E, F on M. These two tensors have the following properties:

- (i) $A_{HE} = A_E$; $T_{VE} = T_E$.
- (ii) A_E and T_E are skew-symmetric with respect to \langle , \rangle .
- (iii) A_E and T_E take vertical vectors to horizontal vectors and vice-versa.
- (iv) If V and W are vertical and X and Y are horizontal, then

$$T_V W = T_W V, \quad A_Y X = -A_X Y.$$

Definition. A vector field X on M is said to be *basic* if it is the unique horizontal lift of a vector field X_* on B, so that $\pi_*(X) = X_*$.

Lemma 1 [5, p. 460]. If X and Y are basic vector fields on M, then

- $(1) \langle X, Y \rangle = \langle X_{\star}, Y_{\star} \rangle \cdot \pi,$
- (2) H[X, Y] is the basic vector field corresponding to $[X_*, Y_*]$,
- (3) $H(\nabla_X Y)$ is the basic vector field corresponding to $\nabla_{X_*}^* Y_*$ where ∇^* is the connection on B.

Lemma 2 [5, p. 461]. If ∇ is the connection on M, and $\hat{\nabla}$ the connection on a fiber, then for X, Y horizontal vector fields and V, W vertical vector fields we have

- $(1) \nabla_{\nu} W = T_{\nu} W + \hat{\nabla}_{\nu} W,$
- $(2) \nabla_{\nu} X = H(\nabla_{\nu} X) + T_{\nu} X,$
- $(3) \nabla_X V = A_X V + V(\nabla_X V),$
- $(4) \nabla_X Y = H(\nabla_X Y) + A_X Y,$
- (5) if X is basic, then $H(\nabla_{\nu}X) = A_{\nu}V$.

We will assume that the fibers are totally geodesic, so that by (1) $T_VW = 0$, which gives

- $(1)' \nabla_{\nu} W = \hat{\nabla}_{\nu} W,$
- $(2)' \nabla_X V = H(\nabla_V X).$

O'Neill also proves [5, p. 465] the following relations between the sectional curvatures K of M and K_* of B when the fibers are totally geodesic:

$$(\theta) K_{X \wedge V} = \frac{\langle A_X V, A_X V \rangle}{\langle X, X \rangle \langle V, V \rangle},$$

$$(\theta\theta) K_{*X_* \wedge Y_*} = K_{X \wedge Y} + \frac{3\langle A_X Y, A_X Y \rangle}{\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2},$$

where X and Y are horizontal vector fields, V is a vertical vector field, and $K_{E \wedge F}$ (respectively, $K_{*E_* \wedge F_*}$) denotes the sectional curvature in M (respectively B) of the plane spanned by E and F (E_* and F_*).

In the Riemannian case, $(\theta\theta)$ says that sectional curvatures are increased by submersions. Since we will be dealing with submersions from H_1^{m+k} , let us first look at the case of submersion from a Lorentzian manifold with negative sectional curvature to a Riemannian manifold.

Proposition 1. If $\pi: M_1^{m+k} \to B^m$ is an indefinite Riemannian submersion with totally geodesic fibers, where M is Lorentzian and has negative sectional curvature and B is Riemannian, then k = 1.

Proof. By (θ) we have

$$0 > K_{X \wedge V} = \frac{\langle A_X V, A_X V \rangle}{\langle X, X \rangle \langle V, V \rangle}.$$

Since A_XV and X are horizontal, $\langle A_XV, A_XV \rangle \ge 0$ and $\langle X, X \rangle > 0$. Thus $\langle V, V \rangle < 0$, i.e., V is timelike, and $A_XV \ne 0$ for all horizontal $X \ne 0$, and all

vertical $V \neq 0$. Since M is Lorentzian, the timelike vectors are essentially one-dimensional and so the vertical vectors are one-dimensional. q.e.d.

Thus if $\pi: H_1^{m+1} \to B^m$ is a submersion with totally geodesic fibers, then by $(\theta\theta)$ we have

$$K_{*X_{\bullet} \wedge Y_{\bullet}} = -1 + \frac{3\langle A_X Y, A_X Y \rangle}{\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2},$$

and because $A_X Y$ is vertical, $\langle A_X Y, A_X Y \rangle \leq 0$. This shows that $K_* \leq -1$ so that curvature is nonincreasing in a submersion of this type.

Proposition 2. If $\pi: H_1^{m+1} \to B^m$ is a submersion with totally geodesic fibers, then $\pi_i(B^m) = 0, j = 1, 2, 3, \cdots$.

Hint of proof. We must only show that in the fibration

$$S^{1} \xrightarrow{i} S^{1} \times \mathbb{R}^{m} \to B^{m}$$

$$\downarrow \wr$$

$$H_{1}^{m+1}$$

that *i* induces a homotopy equivalence. This is clear, since every geodesic in H_1^{m+1} is a circle in \mathbb{R}_2^{m+2} of the form $(\cos t)x_0 + (\sin t)X_0$ with $\langle x_0, X_0 \rangle = 0$.

Theorem 2. If $\pi: H_1^{m+1} \to B^m$ is an indefinite Riemannian submersion with totally geodesic fibers, then m = 2n, for some n > 0.

Proof. H_1^{m+1} is not only equipped with the fundamental tensor A but also with a foliation by timelike geodesics. Thus there is a smooth vector field V tangent to these geodesics with $\langle V, V \rangle = -1$. Let X and Y be horizontal vector fields on H_1^{m+1} . We know that A_XV is horizontal. Therefore

$$0 = Y \langle X, V \rangle = \langle \nabla_Y X, V \rangle + \langle X, \nabla_Y V \rangle = \langle A_Y X, V \rangle + \langle X, A_Y V \rangle.$$

Interchanging X and Y we have

$$0 = \langle A_X Y, V \rangle + \langle Y, A_X V \rangle.$$

Since $A_X Y + A_Y X = 0$, adding these two equations yields

$$\langle X, A_Y V \rangle + \langle Y, A_X V \rangle = 0,$$

so that $A_{-}V: H_{x} \to H_{x}$ is skew-symmetric. If the horizontal space H_{x} were odd dimensional, then $A_{-}V$ would have 0 as an eigenvalue. On the other hand, (θ) gives

$$\frac{\langle A_X V, A_X V \rangle}{\langle X, X \rangle \langle V, V \rangle} = -1.$$

But $\langle V, V \rangle = -1$, so $\langle A_X V, A_X V \rangle = \langle X, X \rangle$ which means A_-V is an isometry. Thus H_x must be even dimensional, and m = 2n. q.e.d.

In fact a skew-symmetric isometry is an almost complex structure, since a basis can be found with respect to which the mapping is of the form

$$\begin{bmatrix} 0 & 1 & & \\ -1 & 0 & & & \\ & & 0 & 1 \\ & & -1 & 0 \end{bmatrix}.$$

Thus we know that any indefinite Riemannian submersion from H_1^k with totally geodesic fibers onto a Riemannian manifold is of the form π : $H_1^{2n+1} \to B^{2n}$, and B^{2n} is simply connected.

3. This part of the paper will show that B^{2n} is holomorphically isometric to D^n , the disc in \mathbb{C}^n with the Bergman metric [4, Ex. 10.7].

First we shall show that the submersion induces an almost complex structure on B^{2n} and a Hermitian metric on B^{2n} . Then it will be seen that with these induced structures B^{2n} is a Kähler manifold.

One could also show that H_1^{2n+1} is an indefinite regular Sasakian manifold with the structure induced from the submersion and so [6, p. 150] B^{2n} is a real 2n-dimensional Kähler manifold. The proofs are similar.

Let V be as in the proof of Theorem 2. Since V is a geodesic vector field, $\nabla_V V = 0$. Let $\phi(E) = A_E V$ for all vector fields E on H_1^{2n+1} , and let η be the one-form dual to V, so that $\eta(V) = -1$. Then we have

Lemma 3. (1) $\phi(V) = 0$,

- $(2) \eta(\phi(E)) = 0,$
- (3) $\phi^2(E) = -E \eta(E)V$,
- (4) $\langle \phi(E), \phi(F) \rangle = \langle E, F \rangle + \eta(E)\eta(F),$
- (5) $\eta(E) = \langle E, V \rangle$,

for all vector fields E, F on H_1^{2n+1} .

Proof. (1), (2), (5) are clear.

(3) Let $E = X + \lambda V$ where X is horizontal. Then

$$\phi^{2}(E) = A_{A_{E}V}V = A_{A_{X}V}V$$
, and $A_{A_{X}V}V = -X$,

since for all horizontal Y

$$\langle A_{A_XV}V, Y \rangle = -\langle V, A_{A_XV}Y \rangle = \langle V, A_YA_XV \rangle$$

= $-\langle A_YV, A_XV \rangle = -\langle X, Y \rangle$.

Thus

$$\phi^{2}(X + \lambda V) = -X = -(X + \lambda V) - \eta(X + \lambda V)V = -E - \eta(E)V.$$
(4) Let $E = X + \lambda V$, $F = Y + \mu V$ where X and Y are horizontal. Then
$$\langle \phi E, \phi F \rangle = \langle A_{E}V, A_{F}V \rangle = \langle A_{X}V, A_{Y}V \rangle$$

$$= \langle X, Y \rangle = \langle X + \lambda V, Y + \mu V \rangle + \eta(X + \lambda V)\eta(Y + \mu V).$$

q.e.d.

Since the basic vector fields on H_1^{2n+1} correspond to vector fields on B^{2n} , we focus our attention on these vector fields. In particular, in order to have ϕ induce an almost complex structure on B^{2n} , if X is basic, then A_XV must be basic.

Theorem 3. If X is a basic vector field on H_1^{2n+1} , then A_XV is a basic vector field.

Proof. Lemma 1.2 [1, p. 254]: Let B_i be a basic vector field on H_1^{2n+1} corresponding to B_i on B^{2n} , and let X be horizontal. If $\langle X, B_i \rangle_p = \langle X, B_i \rangle_{p'}$ for all such B_i and any p, p' in $\pi^{-1}(b), b \in B^{2n}$, then X is basic.

This means that for all B, basic, we must show that $V\langle A_X V, B \rangle = 0$. Since

$$\begin{split} V\langle A_X V, B \rangle &= \langle \nabla_V (A_X V), B \rangle + \langle A_X V, \nabla_V B \rangle \\ &= \langle \nabla_V (A_X V), B \rangle + \langle A_X V, A_B V \rangle \\ &= \langle \nabla_V (A_X V), B \rangle + \langle X, B \rangle, \end{split}$$

we must show that for X basic $\nabla_{V}(A_{X}V) = -X$. On H_{1}^{2n+1}

$$R(V,X)V = \nabla_V \nabla_X V - \nabla_X \nabla_V V - \nabla_{[X,V]} V = -(V \wedge X)V,$$

since H_1^{2n+1} has constant curvature -1.

 $R(V,X)V = \nabla_V \nabla_X V - \nabla_{[X,V]} V$ since $\nabla_V V = 0$, and because [V,X] is vertical $\nabla_{[X,V]} V = \rho \nabla_V V = 0$ yielding $R(V,X)V = \nabla_V \nabla_X V$.

On the other hand

$$R(V,X)V = -(\langle X, V \rangle V - \langle V, V \rangle X) = -X$$

so $\nabla_V \nabla_X V = -X$. But

$$\nabla_{V}(\nabla_{X}V) = \nabla_{V}(A_{X}V + V(\nabla_{X}V)) = \nabla_{V}(A_{X}V)$$

since $\langle \nabla_X V, V \rangle = \frac{1}{2} X \langle V, V \rangle = 0$. q.e.d.

Thus ϕ induces an almost complex structure on B^{2n} .

Theorem 4. This almost complex structure on B^{2n} is integrable.

Proof. We must show that $N_{\phi}(X_*, Y_*) = 0$ where X_* and Y_* are vector fields on B^{2n} , and N_{ϕ} is the Nijenhuis tensor of ϕ :

$$N_{\phi}(X_{*}, Y_{*}) = [\phi X_{*}, \phi Y_{*}] - [X_{*}, Y_{*}] - \phi[X_{*}, \phi Y_{*}] - \phi[\phi X_{*}, Y_{*}].$$

The basic vector field corresponding to $N_{\phi}(X_{*}, Y_{*})$ is $H[\phi X, \phi Y] - H[X, Y] - \phi[X, \phi Y] - \phi[\phi X, Y]$ where X and Y are the basic vector fields associated

with X_* and Y_* . This is equivalent to

$$\begin{split} H(\nabla_{\phi X} \phi Y) - H(\nabla_{\phi Y} \phi X) - H(\nabla_{X} Y) + H(\nabla_{Y} X) - \phi(\nabla_{X} \phi Y) \\ + \phi(\nabla_{\phi Y} X) - \phi(\nabla_{\phi X} Y) + \phi(\nabla_{Y} \phi X) \end{split}$$

$$= H(\nabla_{(A_{X} V)} (A_{Y} V)) - H(\nabla_{(A_{Y} V)} (A_{X} V)) - H(\nabla_{X} Y) + H(\nabla_{Y} X)$$

$$= A_{\nabla_{X} (A_{Y} V)}^{(e)} V + A_{\nabla_{(A_{Y} V)} X} V - A_{\nabla_{(A_{Y} V)} Y} V + A_{\nabla_{Y} (A_{Y} V)} V.$$

In order to prove $N_{\phi}(X_*, Y_*) = 0$ it is sufficient to prove Lemma 4. If X and Y are horizontal vector fields on H_1^{2n+1} , then

$$(\dagger) H(\nabla_X(A_YV)) = A_{(\nabla_XY)}V.$$

If (†) holds, then

$$\begin{split} H\big(\nabla_{A_XV}A_YV\big) &= A_{\nabla_{A_XV}Y}V,\\ H\big(\nabla_{A_YV}A_XV\big) &= A_{\nabla_{A_YV}X}V,\\ A_{\nabla_X(A_YV)}V &= H\big(\nabla_X\big(A_{A_YV}V\big)\big) &= -H(\nabla_XY),\\ A_{\nabla_X(A_YV)}V &= -H(\nabla_YX), \end{split}$$

and so (a) = (g), (b) = (f), (e) = -(c) and (h) = -(d). Thus the sum is zero. Proof of Lemma 4. (†) is equivalent to

(†')
$$\langle \nabla_X A_Y V, Z \rangle = \langle A_{\nabla_X Y} V, Z \rangle$$
 for all horizontal Z.

From [5, p. 464 {3}]

$$\langle R(Y,Z)X,V\rangle = -\langle (\nabla_X A)_Y Z,V\rangle,$$

so

$$\langle R(Y,Z)V,X\rangle = \langle (\nabla_X A)_Y Z,V\rangle.$$

Since $R(Y, Z)V = -(Y \wedge Z)V = 0$, we have $\langle (\nabla_X A)_Y Z, V \rangle = 0$, which expands to

$$0 = \langle \nabla_X (A_Y Z), V \rangle - \langle A_{\nabla_X Y} Z, V \rangle - \langle A_Y (\nabla_X Z), V \rangle.$$

Substituting

$$A_YZ = -\langle A_YZ, V \rangle V = \langle A_YV, Z \rangle V$$

in the above equation gives

$$\begin{split} 0 &= \langle \nabla_X \langle A_Y V, Z \rangle V, V \rangle - \langle A_{\nabla_X Y} Z, V \rangle - \langle A_Y (\nabla_X Z), V \rangle \\ &= \langle A_Y V, Z \rangle \langle \nabla_X V, V \rangle + \langle X \langle A_Y V, Z \rangle V, V \rangle \\ &- \langle A_{\nabla_X Y} Z, V \rangle - \langle A_Y (\nabla_X Z), V \rangle \\ &= -\langle \nabla_X (A_Y V), Z \rangle - \langle A_Y V, \nabla_X Z \rangle - \langle A_{\nabla_X Y} Z, V \rangle - \langle A_Y (\nabla_X Z), V \rangle \\ &= \langle \nabla_X (A_Y V), Z \rangle + \langle A_Y V, \nabla_X Z \rangle - \langle Z, A_{\nabla_X Y} V \rangle + \langle A_Y (\nabla_X Z), V \rangle \\ &= \langle \nabla_X (A_Y V), Z \rangle - \langle A_{\nabla_X Y} V, Z \rangle \end{split}$$

because $\langle A_Y V, \nabla_X Z \rangle + \langle A_Y (\nabla_X Z), V \rangle = 0$. q.e.d.

Note that the metric induced on B^{2n} is Hermitian since $\langle \phi X, \phi Y \rangle = \langle X, Y \rangle$ for X, Y basic on H_1^{2n+1} . Thus in order to show that B^{2n} is Kählerian we must only show that

$$\nabla_{X_{\bullet}}^{*} \phi Y_{\bullet} = \phi (\nabla_{X_{\bullet}}^{*} Y_{\bullet}).$$

Since the basic vector field corresponding to $\nabla_{X_{\bullet}}^* Y_{\bullet}$ is $H(\nabla_x Y)$ and the basic vector field corresponding to $\nabla_{X_{\bullet}}^* \phi Y_{\bullet}$ is $H(\nabla_x \phi Y)$, we must show that

$$H(\nabla_X \phi Y) = \phi(\nabla_X Y)$$

for X, Y basic on H_1^{2n+1} . But this is just (†).

Thus B^{2n} is a Kähler manifold, $\pi_1(B^{2n}) = 0$ and to finish the proof of Theorem 1 it is only necessary to show that B^{2n} has constant holomorphic sectional curvature [4, p. 170, Theorem 7.9].

By $(\theta\theta)$ we obtain

$$\begin{split} K_{*X_{*} \wedge \phi X_{*}} &= K_{X \wedge \phi X} + 3 \frac{\langle A_{X} \phi X, A_{X} \phi X \rangle}{\langle X, X \rangle \langle \phi X, \phi X \rangle - \langle X, \phi X \rangle^{2}} \\ &= -1 + 3 \frac{\langle A_{X} A_{X} V, A_{X} A_{X} V \rangle}{\langle X, X \rangle^{2}} \,. \end{split}$$

Note $A_X A_X V = -\langle A_X A_X V, V \rangle V = \langle A_X V, A_X V \rangle V = \langle X, X \rangle V$, so that

$$K_{*X_{\bullet} \wedge \phi X_{\bullet}} = -1 + 3 \frac{\langle X, X \rangle^2 \langle V, V \rangle}{\langle X, X \rangle^2} = -4.$$

This completes the proof of Theorem 1.

Just as Escobales does in [1] we can show that any two such maps are equivalent.

Bibliography

- [1] R. H. Escobales, Jr., Riemannian submersions with totally geodesic fibers, J. Differential Geometry 10 (1975) 253-276.
- [2] _____, Riemannian submersions from complex projective space, J. Differential Geometry 13 (1978) 93-107.
- [3] A. Gray, Pseudo Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967) 715-737.
- [4] S. Kobayashi & K. Nomizu, Foundations of Differential Geometry, Vol. II, Interscience, New York, 1969.
- [5] B. O'Neill, The fundamental equations of a submersion, Mich. Math. J. 13 (1966) 459-469.
- [6] K. Yano & M. Kon, Anti-invariant submanifolds, Marcel Dekker, New York, 1976.

WELLESLEY COLLEGE
UNIVERSITY OF CALIFORNIA, BERKELEY