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SUBMERSIONS FROM' ANTI-DE SITTER SPACE
WITH TOTALLY GEODESIC FIBERS

MARTIN A. MAGID

Introduction

In [5] O’Neill introduced the notion of a Riemannian submersion.
Escobales [1], [2] classified Riemannian submersions from a sphere $” and
from a complex projective space CP”" with totally geodesic fibers.

This paper investigates such submersions for an indefinite space form:
anti-de Sitter space. It is shown that there is essentially only one submersion
from H?**! onto a Riemannian manifold with totally geodesic fibers, and
this is the standard one onto a complex hyperbolic space CH".

1. Let M, B be C* indefinite Riemannian manifolds. An indefinite
Riemannian submersion #: M — B is an onto, C ® mapping such that

(1) 7 is of maximal rank, ’

(2) =, preserves the lengths of horizontal vectors, i.e., vectors orthogonal to
the fibers 77'(x), x € B,

(3) the restriction of the metric to the vertical vectors is nondegenerate.

Consider the following example, [4, p. 282, Example 10.7] p: H?+! —
CH", where H>*! is a (2n + 1)-dimensional anti-de Sitter space with con-
stant sectional curvature —1 and signature (1, 2r), and CH", defined below, is
a complex hyperbolic space. On C**!let

n

(Z, W) = —zgWo + > 2Wps
k=1

n
(Z, Wy = Re(Z, W) = —xqhg — Yoo + 2 Xl + Vit
k=1

where
Z=(2" " ,2) = (Xg+ Dg -+ s Xy + D),
W= (wo, "+ -, W) = (g + ivg, "+, uy + i),
HY*' = {7eC*: (Z,2) = -1 =(Z,2))
={(Xp Yo" » Xy Yp): X =Y+ XT 4+ - - x4+ yE=-1}.
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The tangent space to H¥"*! at 2; Ty is .

T;={W eC*: (Z, W) =0}.

Let T¢ = {U € C**!: (U, 7> =0=(U, iz)}, and setting H] = (A € C:
M = 1} we have an H} action on H**!, 71> AZ.

At each point of H2"*! the vector field iZ is tangent to the flow of the
action, and {iz, i) = —1. Note that the orbit is x, = (cos ¢ + i sin #)Z’ and
dx,/dt = ix,. The orbit lies in the negative definite plane spanned by {Z, iz}.
The identification space of this action is called CH", and the projection is
denoted by p. It is easy to see that T, (CH") can be identified with 7%. This
construction mimics that of CP”. CH” has negative constant holomorphic
sectional curvature. p: H>"*! > CH" is an indefinite Riemannian submer-
sion.

The main result of this paper is

Theorem 1. If =: Hf — B/ is an indefinite Riemannian submersion from
anti-de Sitter space to a Riemannian manifold with totally geodesic fibers, then
k =2n+ 1,j = 2n, and B*" is holomorphically isometric to CH", where B’ is
equipped with an integrable almost complex structure induced from the submer-
sion. (See [1], [2].)

2. This section deals with the algebraic preliminaries.

Given #: M — B, an indefinite Riemannian submersion, let ¥V and H
denote the vertical and horizontal projections.

T.0n=V, ®H,
V/ H
V., H,
O’Neill [5] defines two fundamental tensors on (M, V, {, >):
AgF = V(VygHF) + H(V gy VF), TgF = H(V, zVF) + V(V zHF),

for vector fields E, F on M. These two tensors have the following properties:
W) App = Ag; Tyg = Tk
(ii) A5 and T are skew-symmetric with respect to , >.
(iii) Az and T, take vertical vectors to horizontal vectors and vice-versa.
(@iv) If ¥ and W are vertical and X and Y are horizontal, then

Ty W = TyV, AyX = -A,Y.

Definition. A vector field X on M is said to be basic if it is the unique
horizontal lift of a vector field X, on B, so that = (X) = X,.
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Lemma 1[5, p. 460]. If X and Y are basic vector fields on M, then

HLX, Y) =<X,, Y,> =

(2) H[X, Y] is the basic vector field corresponding to [X,, Y,],

(3) H(VY) is the basic vector field corresponding to V* Y, where V* is the
connection on B.

Lemma 2 [5, p. 461].  If V is the connection on M, and V the connection on a
fiber, then for X, Y horizontal vector flelds‘ and V, W vertical vector fields we
have

¢))] VVW =T,W + V,,W,

Q) V,X=HV,X)+ T X,

BV V =AxV + V(Vy V),

@ V,Y=HV,Y)+ A7,

(5) if X is basic, then H(V , X) = A, V.

We will assume that the fibers are totally geodes1c so that by (1) 7, W = 0,
which gives

ayv,w=V,w,

@y VXV = H(V  X).

O’Neill also proves [5, p. 465] the following relations between the sectional
curvatures K of M and K, of B when the fibers are totally geodesic:

{AxV, AxV)
0 =X X7 7
( ) KX/\V <X,X><V, V> ’
3{A4,Y, AyY
(66) K*X‘/\Y‘= Kynv + = i

(X, XY, Y> —<(X, Y’

where X and Y are horizontal vector fields, ¥ is a vertical vector field, and
K\ r (tespectively, K, E.A F‘) denotes the sectional curvature in M (respec-
tively B) of the plane spanned by E and F (E, and F)).

In the Riemannian case, (#@) says that sectional curvatures are increased
by submersions. Since we will be dealing with submersions from H"**, let us
first look at the case of submersion from a Lorentzian manifold with negative
sectional curvature to a Riemannian manifold.

Proposition 1. If 7: M"** — B™ is an indefinite Riemannian submersion
with totally geodesic fibers, where M is Lorentzian and has negative sectional
curvature and B is Riemannian, then k = 1.

Proof. By (8) we have

{AyV, Ay V>
X, XXV, V)~

Since A,V and X are horizontal, (A, V, A,V > > 0and (X, X > > 0. Thus
{V, V> <0,ie., V is timelike, and 4, V' # 0 for all horizontal X # 0, and all

0>Kyny =
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vertical ¥ 5 0. Since M is Lorentzian, the timelike vectors are essentially
one-dimensional and so the vertical vectors are one-dimensional. q.e.d.

Thus if #: H{"*' - B™ is a submersion with totally geodesic fibers, then by
(68) we have :

N 3(A, Y, A, Y
KX, XY, Y)Y —LX, YO

K*X_AY_ =-1

and because A4, Y is vertical, {(4,Y, Ay Y > < 0. This shows that X, < -1 so
that curvature is nonincreasing in a submersion of this type.

Proposition 2. If m: H"*'— B™ is a submersion with totally geodesic
fibers, then w(B™) = 0,/j=12,3,--"-.

Hint of proof. 'We must only show that in the fibration

S5 81 R™ _5 g™
it
H1m+1

that i induces a homotopy equivalence. This is clear, since every geodesic in
H"*! s a circle in RF™*2 of the form (cos £)x, + (sin )X, with {x, X;> = 0.

Theorem 2. If7: H m+1_5 B™ is an indefinite Riemannian submersion with
totally geodesic fibers, then m = 2n, for some n > 0.

Proof. H™*!is not only equipped with the fundamental tensor 4 but also
with a foliation by timelike geodesics. Thus there is a smooth vector field V
tangent to these geodesics with (¥, V) = —1. Let X and Y be horizontal
vector fields on H"*'. We know that Ay V is horizontal. Therefore

0=YX, V) =(V X, V) 4+ X,V V> =LA, X, V) +{X, A, V).

Interchanging X and Y we have

0=C4,Y, V) + <Y, A,V .
Since A, Y + A,X = 0, adding these two equations yields

<X, AYV> + <Y, AXV> = 09
so that A_V: H, — H, is skew-symmetric. If the horizontal space H, were
odd dimensional, then 4_V would have 0 as an eigenvalue. On the other
hand, () gives ‘

(AgV, Ay V>

(X, XXV, V> L

But<{V, V) = -1,50<{A,V, Ay V) = (X, X ) which means 4_Vis an isome-
try. Thus H, must be even dimensional, and m = 2n. q.e.d.
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In fact a skew-symmetric isometry is an almost complex structure, since a

basis can be found with respect to which the mapping is of the form

0 1 '
-1 0
0 1|
-1 0

Thus we know that any indefinite Riemannian submersion from Hf with
totally geodesic fibers onto a Riemannian manifold is of the form #: H"*!
— B?, and B*" is simply connected. -

3. This part of the paper will show that B%* is holomorphically isometric to
D", the disc in C* with the Bergman metric [4, Ex. 10.7].

First we shall show that the submersion induces an almost complex
structure on B%* and a Hermitian metric on B%. Then it will be seen that with
these induced structures B** is a Kihler manifold.

One could also show that H?"*! is an indefinite regular Sasakian manifold
with the structure induced from the submersion and so [6, p. 150] B* is a real
2n-dimensional Kidhler manifold. The proofs are similar.

Let V be as in the proof of Theorem 2. Since ¥V is a geodesic vector field,
V,V =0.Let (E) = AV for all vector fields E on H?"*!, and let n be the
one-form dual to ¥, so that n(¥V) = —1. Then we have

Lemma3. ()V)=

(2) n(#(E)) = O

(3) $%(E) = -E — n(E)V,

@) (HE), §(F)) =<E, Fy + n(E)n(F),

®)(E)=<E, V),
for all vector fields E, F on H"**.

Proof. (1), (2), (5) are clear. -

B let E=X+ AV where X is honzontal Then

$HE) = A,V =A,,V,and4, ,V = -X,
since for all horizontal Y ,
<AAXVI/, Y) = —<_V, AAXVY> =V, AyAxV )
= LAV, A, V> = ~(X, Y.
Thus '
X +AV) = -X = — (X +AV) = 9(X + AV)V = —E — q(E)V.
W LetE =X+ AV, F=Y + pV where X and Y are horizontal. Then
{PE, 9F ) = {AgV, ApV ) = {AyV, AyV)
=X, Y)=LX +AV, Y + p¥V) + (X + AV)n(Y + pb).
q.c.d.
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Since the basic vector fields on H2"*! correspond to vector fields on B>,
we focus our attention on these vector fields. In particular, in order to have ¢
induce an almost complex structure on B%, if X is basic, then 4, ¥ must be

basic.

Theorem 3. If X is a basic vector field on H"*', then A,V is a basic
vector field.

Proof. Lemma 12 [1, p. 254]): Let B; be a basic vector field on H{"*!
corresponding to B, on B>, and let X be horizontal. If X, B,>, = (X, B>,
for all such B; and any p, p’ in 7#7(b), b € B*", then X is basic.

This means that for all B, basic, we must show that V<4, V, B> = 0. Since

V<AxV, B) = <VV(AXV)’ B) + {AyV, VyB)
= (Vi (AxV), B) + {AxV, A3V
= <VV(AXV)’ B> + <X’ B>,

we must show that for X basic V{45 V) = -X. On H}"*!
RV, X)V =V, V¥V — VY,V = Vg )V = = (V AX)Y,

since H{"**! has constant curvature —1.

RV, X)V =V, V3V — Vix 1V since V, V' =0, and because [V, X] is
vertical Viy )V = pV, V' = 0 yielding R(V, X)V =V, V, V.

On the other hand

RV, X)V=-(X, VDV =V, V>X) =X
so V,Vy¥V = -X. But
Vi(Vi?) =V (dyV + P(Vy V) =V, {4y V)

since {VyV, V> =3X{V, V) =0. qed. .

Thus ¢ induces an almost complex structure on B*".

Theorem 4. This almost complex structure on B*" is integrable.

Proof. We must show that N (X, Y,) =0 where X, and Y, are vector
fields on B*", and N, » is the Nijenhuis tensor of ¢:

N(X, 1,) =[¢X, oY, ] —[X,. ¥, ] - o[ X.. 07, ] — ¢[oX,. Y., ].

The basic vector field corresponding to Nq,(X o Yo is H[¢X, ¢Y] — H[X, Y]
- o[X, ¢Y] — ¢l¢X, Y] where X and Y are the basic vector fields associated
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with X, and Y,. This is equivalent to
H(Vyx¢Y) — H(V,y9X) — H(VxY) + H(VyX) — $(Vx9Y)
+¢(VorX) ~ ¢(Vpx ¥) + ¢(VyoX)

(a) : ®) ~ (© (d)
= H(V(AXV)(AYV)) — H(V 4, 1(AxV)) — H(V,Y) + H(VX)

(e) )] (8 ‘ O]
= Ay )V Ay, 3V = Ay, yV+ Ay V.

Veay

In order to prove N (X,, Y,) =0 it is sufficient to prove
Lemma 4. If X and Y are horizontal vector fields on H*, then

(T) H(VX(AYV)) =-A(v,,Y)V~
If () holds, then
H(VAXVAYV) = AVAXVYV’
H(V 1, yAxV) = Ay, xV>
Av iV = H(Vx(4,,,V)) = -H(VxY),
AVY(AXV)V = _H(VYX)9

and so (a) = (g), (b) = (f), (6) = —(c) and (h) = —(d). Thus the sum is zero.
Proof of Lemma 4. () is equivalent to

() (VxAyV,Z) = Ay yV, Z) for all horizontal Z.

From [35, p. 464 {3}]
(R(Y, )X, V> = —{(Vxd)4Z, V',

SO .
. <R( Y’ Z)V’ X> = <(VXA)YZ’ V>

Since R(Y, Z)V = (Y N\ Z)V = 0, we have {(VyA)yZ, V> = 0, which ex-
pands to

0= <VX(AYZ)’ vy - <AVXYZ’ V) —<Ay(VxZ), V5.

Substituting ,
AyZ = AyZ, VIV ={AyV, ZHV
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in the above equation gives
0=LV<4yV,Z)V, V) — <AVXYZ> V) —<Ay(VxZ), V>
= AV, ZXVV, VS + XAV, ZYV, VD
_<AVXYZ’ V> - <AY(VXZ)’ V> )
= _<VX(AYV)’ Z) —{4yV, VxZ) — <A\7XYZ’ V> —<4y(Vx2Z), V>
=Vy(AyV), Z) + Ay V, V4 Z) — KZ, Aq V) + {A{VZ), V)
= <VX(AYV)’ zZ) - <A\§,YV: z) /
because (A, V, VZ> + {A,(VxZ), V> =0. qed.
Note that the metric induced on B?** is Hermitian since {(¢X, ¢¥ ) =

(X, Y for X, Y basic on H?"*!. Thus in order to show that B> is Kihlerian
we must only show that

Vi oY, = (V% Y,)

Since the basic vector field corresponding to V3 Y, is H(V,Y) and the basic
vector field corresponding to V}‘q) Y, is H(V y¢Y), we must show that

H(V30Y) = $(V,Y)

for X, Y basic on H"*!. But this is just (}).

Thus B?* is a Kihler manifold, #,(B**) = 0 and to finish the proof of
Theorem 1 it is only necessary to show that B2* has constant holomorphic
sectional curvature [4, p. 170, Theorem 7.9].

By (68) we obtain
(Ax9X, AxdX >
PR THASTTUX, XX, XY — (X, 9X )2

=_1+3 {AxAxV, AxAx V> )
X, X
Note Ay Ay V = —(AxAxV, VOV = (A, V, Ax VIV = (X, X DV, so that

+ 35X XXV, V> _ _a,
X, X

K*x,/\¢x.= -1

This completes the proof of Theorem 1.
Just as Escobales does in [1] we can show that any two such maps are
equivalent.
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